Cell division curtails helper phenotype plasticity and expedites helper T-cell differentiation.
نویسندگان
چکیده
Following activation by antigen, helper T cells differentiate into one of many effector phenotypes. Formulating mechanistic mathematical models combining regulatory networks at the transcriptional, translational and epigenetic level, we study how individual helper T cells may adopt their different phenotypes. For each cytokine phenotype, for example, T helper type 1 (Th1) and type 2 (Th2) cells, we find that the intracellular molecular network allows a cell to adopt one of the three states, which we interpret as naive, active and memory states. Cell division markedly speeds up the differentiation into a particular memory state because of DNA demythelation. In a memory state, cells readily resume production of the same cytokine they produced before. Using stochastic models we show that helper T-cell plasticity (that is, the ability to switch phenotype) is low during clonal expansion. Although most memory cells rapidly secrete the original cytokine upon restimulation, some adopt another phenotype and produce different cytokines, allowing for considerable diversity in the phenotypes that are adopted during a memory response. In summary, we show that helper T-cell division expedites cell differentiation by increasing DNA demethylation. We also show that plasticity is low during the clonal expansion phase, but that helper T cells may adopt alternative phenotypes during a memory response.
منابع مشابه
The role of T helper 9(Th9) against Infectious Diseases
Background and aims: Infectious diseases are disorders caused by organisms such as bacteria, viruses, fungi or parasites .The Th9 subset develops in response to combined signals from TGF-b and IL-4 among a cacophony of other cytokines in an extracellular milieu. T helper 9 (Th9) cells, as a novel CD4 T cell subset, seem to play a complex role in the outcome of specific immune responses. In thi...
متن کاملPlasticity within the αβ+CD4+ T-cell lineage: when, how and what for?
Following thymic output, αβ⁺CD4⁺ T cells become activated in the periphery when they encounter peptide-major histocompatibility complex. A combination of cytokine and co-stimulatory signals instructs the differentiation of T cells into various lineages and subsequent expansion and contraction during an appropriate and protective immune response. Our understanding of the events leading to T-cell...
متن کاملHelper T-cell differentiation and plasticity: insights from epigenetics.
CD4(+) T cells have critical roles in orchestrating immune responses to diverse microbial pathogens. This is accomplished through the differentiation of CD4(+) T helper cells to specialized subsets in response to microbial pathogens, which evoke a distinct cytokine milieu. Signal transducer and activator of transcription family transcription factors sense these cytokines and they in turn regu...
متن کاملCellular and population plasticity of helper CD4+ T cell responses
Vertebrates are constantly exposed to pathogens, and the adaptive immunity has most likely evolved to control and clear such infectious agents. CD4(+) T cells are the major players in the adaptive immune response to pathogens. Following recognition of pathogen-derived antigens naïve CD4(+) T cells differentiate into effectors which then control pathogen replication either directly by killing pa...
متن کاملTranscription factor interplay in T helper cell differentiation
The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Immunology and cell biology
دوره 90 9 شماره
صفحات -
تاریخ انتشار 2012